Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.321
Filtrar
1.
PeerJ ; 12: e16850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562999

RESUMO

Background: Aberrant activation of androgen receptor (AR) signaling plays a crucial role in the progression of prostate adenocarcinoma (PRAD) and contributes significantly to the development of enzalutamide resistance. In this study, we aimed to identify a novel AR-driven signature that can predict prognosis and endows potentially reveal novel therapeutic targets for PRAD. Methods: The Seurat package was used to preprocess the single-cell RNA sequencing (scRNA-seq). Differentially expressed genes were visualized using limma and pheamap packages. LASSO and multi-variate Cox regression models were established using glmnet package. The package "Consensus Cluster Plus" was utilized to perform the consensus clustering analysis. The biological roles of origin recognition complex subunit 1 (ORC1) in PRAD were determined by gain- and loss-of-function studies in vitro and in vivo. Result: We characterized the scRNA-seq data from GSE99795 and identified 10 AR-associated genes (ARGs). The ARGs model was trained and validated in internal and external cohorts. The ARGs were identified as an independent hazard factor in PRAD and correlated with clinical risk characteristics. In addition, the ARGs were found to be correlated with somatic tumor mutation burden (TMB) levels. Two groups that have distinct prognostic and molecular features were identified through consensus clustering analysis. ORC1 was identified as a critical target among these ARGs, and it ORC1 promoted proliferation and stem-like properties of PRAD cells. Chromatin immunoprecipitation (ChIP)-qPCR assay confirmed that AR could directly bind the promoter of ORC1. Activated AR/ORC1 axis contributed to enzalutamide resistance, and targeting ORC1 rendered PRAD cells more susceptible to enzalutamide. Conclusions: This study defines an AR-driven signature that AR activates ORC1 expressions to promote PRAD progression and enzalutamide resistance, which may provide novel targets for PRAD treatment.


Assuntos
Adenocarcinoma , Benzamidas , Nitrilas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Receptores Androgênicos/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Próstata/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Adenocarcinoma/tratamento farmacológico , Complexo de Reconhecimento de Origem
2.
Genome Med ; 16(1): 52, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566104

RESUMO

BACKGROUND: Prostate cancer is a significant health concern, particularly among African American (AA) men who exhibit higher incidence and mortality compared to European American (EA) men. Understanding the molecular mechanisms underlying these disparities is imperative for enhancing clinical management and achieving better outcomes. METHODS: Employing a multi-omics approach, we analyzed prostate cancer in both AA and EA men. Using Illumina methylation arrays and RNA sequencing, we investigated DNA methylation and gene expression in tumor and non-tumor prostate tissues. Additionally, Boolean analysis was utilized to unravel complex networks contributing to racial disparities in prostate cancer. RESULTS: When comparing tumor and adjacent non-tumor prostate tissues, we found that DNA hypermethylated regions are enriched for PRC2/H3K27me3 pathways and EZH2/SUZ12 cofactors. Olfactory/ribosomal pathways and distinct cofactors, including CTCF and KMT2A, were enriched in DNA hypomethylated regions in prostate tumors from AA men. We identified race-specific inverse associations of DNA methylation with expression of several androgen receptor (AR) associated genes, including the GATA family of transcription factors and TRIM63. This suggests that race-specific dysregulation of the AR signaling pathway exists in prostate cancer. To investigate the effect of AR inhibition on race-specific gene expression changes, we generated in-silico patient-specific prostate cancer Boolean networks. Our simulations revealed prolonged AR inhibition causes significant dysregulation of TGF-ß, IDH1, and cell cycle pathways specifically in AA prostate cancer. We further quantified global gene expression changes, which revealed differential expression of genes related to microtubules, immune function, and TMPRSS2-fusion pathways, specifically in prostate tumors of AA men. Enrichment of these pathways significantly correlated with an altered risk of disease progression in a race-specific manner. CONCLUSIONS: Our study reveals unique signaling networks underlying prostate cancer biology in AA and EA men, offering potential insights for clinical management strategies tailored to specific racial groups. Targeting AR and associated pathways could be particularly beneficial in addressing the disparities observed in prostate cancer outcomes in the context of AA and EA men. Further investigation into these identified pathways may lead to the development of personalized therapeutic approaches to improve outcomes for prostate cancer patients across different racial backgrounds.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Metilação de DNA , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Perfilação da Expressão Gênica , DNA/metabolismo
3.
Cell Commun Signal ; 22(1): 219, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589887

RESUMO

BACKGROUND: Prostate cancer (PCa) is a prevalent malignancy in men worldwide, ranking as the second leading cause of cancer-related death in Western countries. Various PCa hormone therapies, such as androgen receptor (AR)-antagonists or supraphysiological androgen level (SAL) reduce cancer cell proliferation. However, treated cells may influence the growth of neighboring cells through secreted exosomes in the tumor microenvironment (TME). Here, the change of protein content of exosomes secreted from PCa cells through treatment with different AR-antagonists or SAL has been analyzed. METHODS: Isolation of exosomes via ultracentrifugation of treated human PCa LNCaP cells with AR-agonist and various AR-antagonists; analysis of cellular senescence by detection of senescence associated beta galactosidase activity (SA ß-Gal); Western blotting and immunofluorescence staining; Mass spectrometry (MS-spec) of exosomes and bioinformatic analyses to identify ligand-specific exosomal proteins. Growth assays to analyze influence of exosomes on non-treated cells. RESULTS: MS-spec analysis identified ligand-specific proteins in exosomes. One thousand seventy proteins were up- and 52 proteins downregulated by SAL whereas enzalutamide upregulated 151 proteins and downregulated 42 exosomal proteins. The bioinformatic prediction indicates an up-regulation of pro-proliferative pathways. AR ligands augment hub factors in exosomes that include AKT1, CALM1, PAK2 and CTNND1. Accordingly, functional assays confirmed that the isolated exosomes from AR-ligand treated cells promote growth of untreated PCa cells. CONCLUSION: The data suggest that the cargo of exosomes is controlled by AR-agonist and -antagonists and distinct among the AR-antagonists. Further, exosomes promote growth that might influence the TME. This finding sheds light into the complex interplay between AR signaling and exosome-mediated communication between PCa cells.


Assuntos
Exossomos , Neoplasias da Próstata , Masculino , Humanos , Antagonistas de Receptores de Andrógenos , Receptores Androgênicos/metabolismo , Exossomos/metabolismo , Ligantes , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Androgênios , Microambiente Tumoral
4.
Commun Biol ; 7(1): 411, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575753

RESUMO

Desmoplastic Small Round Cell Tumor (DSRCT) is a rare, pediatric cancer caused by the EWSR1::WT1 fusion protein. DSRCT predominantly occurs in males, which comprise 80-90% of the patient population. While the reason for this male predominance remains unknown, one hypothesis is that the androgen receptor (AR) plays a critical role in DSRCT and elevated testosterone levels in males help drive tumor growth. Here, we demonstrate that AR is highly expressed in DSRCT relative to other fusion-driven sarcomas and that the AR antagonists enzalutamide and flutamide reduce DSRCT growth. However, despite these findings, which suggest an important role for AR in DSRCT, we show that DSRCT cell lines form xenografts in female mice at the same rate as male mice and AR depletion does not significantly alter DSRCT growth in vitro. Further, we find that AR antagonists reduce DSRCT growth in cells depleted of AR, establishing an AR-independent mechanism of action. These findings suggest that AR dependence is not the reason for male predominance in DSRCT and that AR-targeted therapies may provide therapeutic benefit primarily through an AR-independent mechanism that requires further elucidation.


Assuntos
Tumor Desmoplásico de Pequenas Células Redondas , Feniltioidantoína , Criança , Humanos , Masculino , Feminino , Animais , Camundongos , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Tumor Desmoplásico de Pequenas Células Redondas/genética , Tumor Desmoplásico de Pequenas Células Redondas/metabolismo , Receptores Androgênicos/genética , Benzamidas/farmacologia , Nitrilas
5.
J Nanobiotechnology ; 22(1): 145, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566211

RESUMO

Resistance to androgen receptor (AR) inhibitors, including enzalutamide (Enz), as well as bone metastasis, are major challenges for castration-resistant prostate cancer (CRPC) treatment. In this study, we identified that miR26a can restore Enz sensitivity and inhibit bone metastatic CRPC. To achieve the highest combination effect of miR26a and Enz, we developed a cancer-targeted nano-system (Bm@PT/Enz-miR26a) using bone marrow mesenchymal stem cell (BMSC) membrane and T140 peptide to co-deliver Enz and miR26a. The in vitro/in vivo results demonstrated that miR26a can reverse Enz resistance and synergistically shrink tumor growth, invasion, and metastasis (especially secondary metastasis) in both subcutaneous and bone metastatic CRPC mouse models. We also found that the EZH2/SFRP1/WNT5A axis may be involved in this role. These findings open new avenues for treating bone metastatic and Enz-resistant CRPC.


Assuntos
Benzamidas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Animais , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Linhagem Celular Tumoral , Nitrilas/farmacologia
6.
Sci Adv ; 10(14): eadm7098, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569039

RESUMO

Histopathological heterogeneity is a hallmark of prostate cancer (PCa). Using spatial and parallel single-nucleus transcriptomics, we report an androgen receptor (AR)-positive but neuroendocrine-null primary PCa subtype with morphologic and molecular characteristics of small cell carcinoma. Such small cell-like PCa (SCLPC) is clinically aggressive with low AR, but high stemness and proliferation, activity. Molecular characterization prioritizes protein translation, represented by up-regulation of many ribosomal protein genes, and SP1, a transcriptional factor that drives SCLPC phenotype and overexpresses in castration-resistant PCa (CRPC), as two potential therapeutic targets in AR-indifferent CRPC. An SP1-specific inhibitor, plicamycin, effectively suppresses CRPC growth in vivo. Homoharringtonine, a Food And Drug Administration-approved translation elongation inhibitor, impedes CRPC progression in preclinical models and patients with CRPC. We construct an SCLPC-specific signature capable of stratifying patients for drug selectivity. Our studies reveal the existence of SCLPC in admixed PCa pathology, which may mediate tumor relapse, and establish SP1 and translation elongation as actionable therapeutic targets for CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Recidiva Local de Neoplasia , Fatores de Transcrição/metabolismo , Biossíntese de Proteínas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
7.
Curr Protoc ; 4(4): e1033, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652202

RESUMO

Prostate cancer is a leading diagnosis and major cause of cancer-related deaths in men worldwide. As a typical hormone-responsive disease, prostate cancer is commonly managed with androgen deprivation therapy (ADT) to curb its progression and potential metastasis. Unfortunately, progression to castration-resistant prostate cancer (CRPC), a notably more aggressive phase of the disease, occurs within a timeframe of 2-3 years following ADT. Enzalutamide, a recognized androgen receptor (AR) antagonist, has been employed as a standard of care for men with metastatic castration-resistant prostate cancer (mCRPC) since it was first approved in 2012, due to its ability to prolong survival. However, scientific evidence suggests that sustained treatment with AR antagonists may induce acquired AR mutations or splice variants, such as AR F877L, T878A, and H875Y, leading to drug resistance and thereby diminishing the therapeutic efficacy of these agents. Thus, the establishment of prostate cancer models incorporating these particular mutations is essential for developing new therapeutic strategies to overcome such resistance and evaluate the efficacy of next-generation AR-targeting drugs. We have developed a CRISPR (clustered regularly interspaced short palindromic repeats)-based knock-in technology to introduce an additional F877L mutation in AR into the human prostate cell line LNCaP. This article provides comprehensive descriptions of the methodologies for cellular gene editing and establishment of an in vivo model. Using these methods, we successfully identified an enzalutamide-resistant phenotype in both in vitro and in vivo models. We also assessed the efficacy of target protein degraders (TPDs), such as ARV-110 and ARV-667, in both models, and the corresponding validation data are also included here. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Generation of AR F877L-mutated LNCaP cell line using CRISPR technology Basic Protocol 2: Validation of drug resistance in AR F877L-mutated LNCaP cell line using the 2D CTG assay Support Protocol: Testing of sgRNA efficiency in HEK 293 cells Basic Protocol 3: Validation of drug resistance in AR F877L-mutated LNCaP cell line in vivo.


Assuntos
Benzamidas , Resistencia a Medicamentos Antineoplásicos , Mutação , Nitrilas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Masculino , Nitrilas/uso terapêutico , Benzamidas/uso terapêutico , Humanos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
BMC Cancer ; 24(1): 482, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627648

RESUMO

BACKGROUND: Therapies for metastatic castration-resistant prostate cancer (mCRPC) include targeting the androgen receptor (AR) with androgen receptor inhibitors (ARIs) and prostate-specific membrane antigen (PSMA). Having the ability to detect AR, AR splice variant 7 (AR-V7), or PSMA in circulating tumor cells (CTCs) or circulating exosomal cell-free RNA (cfRNA) could be helpful to guide selection of the appropriate therapy for each individual patient. The Vortex Biosciences VTX-1 system is a label-free CTC isolation system that enables the detection of the expression of multiple genes in both CTCs and exosomal cfRNA from the same blood sample in patients with mCRPC. Detection of both AR-V7 and PSMA gene expression in both CTCs and cfRNA simultaneously has not yet been reported. METHODS: To characterize the combined VTX-1-AdnaDetect workflow, 22Rv1 cancer cells were spiked into blood from healthy donors and processed with the VTX-1 to mimic patient samples and assess performances (capture efficiency, purity, AR and AR-V7 expression). Then, we collected 19 blood samples from 16 patients with mCRPC and therapeutic resistance to androgen receptor inhibitors (ARIs). Plasma was separated and the plasma-depleted blood was processed further with the VTX-1 to collect CTCs. Both plasma exosomal cfRNA and CTCs were subsequently analyzed for AR, AR-V7, PSMA, and prostate-specific antigen (PSA) mRNA expression using the AdnaTest ProstateCancerPanel AR-V7 assay. RESULTS: AR-V7 expression could be detected in 22Rv1 cells spiked into blood from healthy volunteers as well as in CTCs and plasma-derived exosomal cfRNA from patients with mCRPC by processing blood with the VTX-1 CTC isolation system followed by the AdnaTest ProstateCancerPanel AR-V7 assay. 94.7% of patient blood samples (18/19) had detectable AR expression in either CTCs or exosomal cfRNA (16 in CTCs, 12 in cfRNA). 15.8% of the 19 patient blood samples (3/19) were found to have AR-V7-positive (AR-V7+) CTCs, one of which was also AR-V7+ in the exosomal cfRNA analysis. 42.1% of patient blood samples (8/19) were found to be PSMA positive (PSMA+): 26.3% (5/19) were PSMA+ in the CTC analysis and 31.6% (6/19) were PSMA+ in the exosomal cfRNA analysis. Of those 8 PSMA+ samples, 2 had detectable PSMA only in CTCs, and 3 had detectable PSMA only in exosomal cfRNA. CONCLUSION: VTX-1 enables isolation of CTCs and plasma exosomes from a single blood draw and can be used for detecting AR-V7 and PSMA mRNA in both CTCs and cfRNA in patients with mCRPC and resistance to ARIs. This technology facilitates combining RNA measurements in CTCs and exosomal cfRNA for future studies to develop potentially clinically relevant cancer biomarker detection in blood.


Assuntos
Ácidos Nucleicos Livres , Exossomos , Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo , Exossomos/genética , Exossomos/metabolismo , Células Neoplásicas Circulantes/patologia , Próstata/patologia , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Isoformas de Proteínas/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , RNA Mensageiro/genética
9.
Zoolog Sci ; 41(1): 68-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587519

RESUMO

Sexual dimorphism allows species to meet their fitness optima based on the physiological availability of each sex. Although intralocus sexual conflict appears to be a genetic constraint for the evolution of sex-specific traits, sex-linked genes and the regulation of sex steroid hormones contribute to resolving this conflict by allowing sex-specific developments. Androgens and their receptor, androgen receptor (Ar), regulate male-biased phenotypes. In teleost fish, ar ohnologs have emerged as a result of teleost-specific whole genome duplication (TSGD). Recent studies have highlighted the evolutionary differentiation of ar ohnologs responsible for the development of sexual characteristics, which sheds light on the need for comparative studies on androgen regulation among different species. In this review, we discuss the importance of ar signaling as a regulator of male-specific traits in teleost species because teleost species are suitable experimental models for comparative studies owing to their great diversity in male-biased morphological and physiological traits. To date, both in vivo and in vitro studies on teleost ar ohnologs have shown a substantial influence of ars as a regulator of male-specific reproductive traits such as fin elongation, courtship behavior, and nuptial coloration. In addition to these sexual characteristics, ar substantially influences immunity, inducing a sex-biased immune response. This review aims to provide a comprehensive understanding of the current state of teleost ar studies and emphasizes the potential of teleost fishes, given their availability, to find molecular evidence about what gives rise to the spectacular diversity among fish species.


Assuntos
Duplicação Gênica , Receptores Androgênicos , Masculino , Animais , Feminino , Receptores Androgênicos/genética , Caracteres Sexuais , Reprodução , Peixes/genética
10.
J Int Med Res ; 52(3): 3000605241232520, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530023

RESUMO

Androgen insensitivity syndrome (AIS) is a rare disorder with X-linked recessive inheritance in 46 XY patients. The clinical manifestations vary between patients, especially regarding external genitalia development. Herein, the case of AIS in a 13-year-old male, who was born with hypospadias and presented to the hospital with gynaecomastia that had developed from 8 years of age, is reported. No micropenis, cryptorchidism or bifid scrotum were found. Testis volume was 12 ml on both sides. His testosterone and luteinizing hormone levels were normal compared with sex- and age-adjusted reference range. His bone age was approximately 13 years according to Greulich-Pyle assessment. Sequence analysis of the androgen receptor (AR) gene revealed a mutation (c.2041A>G) in exon 4, a novel mutation site in the AR gene. Prediction analysis suggested this to be a disease-causing variant. A milder clinical presentation and normal hormone levels in cases of partial AIS might differ from the usually reported signs and symptoms. A diagnosis of AIS should not be ignored in teenage patients who present with gynaecomastia and hypospadias, but normal hormone levels.


Assuntos
Síndrome de Resistência a Andrógenos , Ginecomastia , Hipospadia , Masculino , Adolescente , Humanos , Síndrome de Resistência a Andrógenos/diagnóstico , Síndrome de Resistência a Andrógenos/genética , Ginecomastia/diagnóstico , Ginecomastia/genética , Receptores Androgênicos/genética , Hipospadia/diagnóstico , Hipospadia/genética , Mutação , Testosterona
11.
Protein Sci ; 33(4): e4945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511494

RESUMO

Deltex proteins are a family of E3 ubiquitin ligases that encode C-terminal RING and DTC domains that mediate interactions with E2 ubiquitin-conjugating enzymes and recognize ubiquitination substrates. DTX3L is unique among the Deltex proteins based on its N-terminal domain architecture. The N-terminal D1 and D2 domains of DTX3L mediate homo-oligomerization, and the D3 domain interacts with PARP9, a protein that contains tandem macrodomains with ADP-ribose reader function. While DTX3L and PARP9 are known to heterodimerize, and assemble into a high molecular weight oligomeric complex, the nature of the oligomeric structure, including whether this contributes to the ADP-ribose reader function is unknown. Here, we report a crystal structure of the DTX3L N-terminal D2 domain and show that it forms a tetramer with, conveniently, D2 symmetry. We identified two interfaces in the structure: a major, conserved interface with a surface of 973 Å2 and a smaller one of 415 Å2. Using native mass spectrometry, we observed molecular species that correspond to monomers, dimers and tetramers of the D2 domain. Reconstitution of DTX3L knockout cells with a D1-D2 deletion mutant showed the domain is dispensable for DTX3L-PARP9 heterodimer formation, but necessary to assemble an oligomeric complex with efficient reader function for ADP-ribosylated androgen receptor. Our results suggest that homo-oligomerization of DTX3L is important for the DTX3L-PARP9 complex to read mono-ADP-ribosylation on a ligand-regulated transcription factor.


Assuntos
Leitura , Receptores Androgênicos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Adenosina Difosfato Ribose/metabolismo
12.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542265

RESUMO

Prostate cancer is the second leading cause of death in males in America, with advanced prostate cancers exhibiting a 5-year survival rate of only 32%. Castration resistance often develops during the course of treatment, but its pathogenesis is poorly understood. This study explores the human microbiome for its implications in castration resistance and metastasis in prostate cancer. RNA sequencing data were downloaded for the bone and soft tissue biopsies of patients with metastatic castration-resistant prostate cancer. These included both metastatic and adjacent normal biopsies. These sequences were mapped to bacterial sequences, yielding species-level counts. A vast majority of species were found to be significantly underabundant in the CRPC samples. Of these, numerous were found to correlate with the expression of known markers of castration resistance, including AR, PI3K, and AKT. Castration resistance-associated signaling pathways were also enriched with these species, including PI3K-AKT signaling and endocrine resistance. For their implications in cancer aggression and metastasis, cancer stem cell markers were further explored for a relation to these species. EGFR and SLC3A2 were widely downregulated, with a greater abundance of most species. Our results suggest that the microbiome is heavily associated with castration resistance and stemness in prostate cancer. By considering the microbiome's importance in these factors, we may better understand the highly aggressive and highly invasive nature of castration-resistant prostate cancer, allowing for the needed improvements in the treatment of this disease.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Disbiose , Castração , Receptores Androgênicos/metabolismo
13.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542313

RESUMO

The RE-1 silencing transcription factor (REST) is a repressor factor related to neuroendocrine prostate cancer (PCa) (NEPC), a poor prognostic stage mainly associated with castration-resistant PCa (CRPC). NEPC is associated with cell transdifferentiation and the epithelial-mesenchymal transition (EMT) in cells undergoing androgen deprivation therapy (ADT) and enzalutamide (ENZ). The effect of REST overexpression in the 22rv1 cell line (xenograft-derived prostate cancer) on EMT, migration, invasion, and the viability for ENZ was evaluated. EMT genes, Twist and Zeb1, and the androgen receptor (AR) were evaluated through an RT-qPCR and Western blot in nuclear and cytosolic fractions of REST-overexpressing 22rv1 cells (22rv1-REST). The migratory and invasive capacities of 22rv1-REST cells were evaluated via Transwell® assays with and without Matrigel, respectively, and their viability for enzalutamide via MTT assays. The 22rv1-REST cells showed decreased nuclear levels of Twist, Zeb1, and AR, and a decreased migration and invasion and a lower viability for ENZ compared to the control. Results were expressed as the mean + SD of three independent experiments (Mann-Whitney U test, Kruskal-Wallis, Tukey test). REST behaves like a tumor suppressor, decreasing the aggressiveness of 22rv1 cells, probably through the repression of EMT and the neuroendocrine phenotype. Furthermore, REST could represent a response marker to ENZ in PCa patients.


Assuntos
Benzamidas , Nitrilas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios , Fatores de Transcrição , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias de Próstata Resistentes à Castração/patologia
14.
Cell Mol Life Sci ; 81(1): 155, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538986

RESUMO

The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.


Assuntos
Hiperplasia Prostática , Animais , Humanos , Masculino , Camundongos , Androgênios/metabolismo , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais
15.
Anal Methods ; 16(14): 2135-2146, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517236

RESUMO

A new method for rapid determination of the content of selective androgenic receptor modulators (SARMs) andarine, cardarine, ligandrol, ostarine and S-23 in capsules by 1H- and 19F-high resolution nuclear magnetic resonance spectroscopy was described and validated. Specificity, linearity, accuracy, precision, detection and quantification limits were considered as validation parameters. Full 1H-, 13C- and 19F-NMR structural assignment of the SARMs is provided as a tool for self-standing identification without a reference standard. Amounts of 7-15 mg of SARMs/capsule were detected in different products with an intermediate precision of 0.8-1.7% in 4 to 20 minutes of analysis time. The validation results and rapidity of analysis confirm the applicability of the method for large-scale screening. The statistical analysis of the results from 19F- and 1H-quantitative NMR showed that both approaches were equally effective, thus expanding the potential use of the methodology to non-fluorinated SARMs. At present, no SARM has been approved for human consumption; however, SARMs are actually used by bodybuilders and recreational athletes, who purchase them even though the risk-benefit ratio of these molecules has not been definitively established.


Assuntos
Anabolizantes , Receptores Androgênicos , Humanos , Androgênios/química , Antagonistas de Androgênios , Espectroscopia de Ressonância Magnética , Anabolizantes/química
16.
Cancer Lett ; 588: 216815, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490329

RESUMO

Epigenetic modifiers are upregulated during the process of prostate cancer, acquiring resistance to castration therapy and becoming lethal metastatic castration-resistant prostate cancer (CRPC). However, the relationship between regulation of histone modifications and chromatin structure in CRPC has yet not fully been validated. Here, we reanalyzed publicly available clinical transcriptome and clinical outcome data and identified NSD2, a histone methyltransferase that catalyzes H3K36me2, as an epigenetic modifier that was upregulated in CRPC and whose increased expression in prostate cancer correlated with higher recurrence rate. We performed ChIP-seq, RNA-seq, and Hi-C to conduct comprehensive epigenomic and transcriptomic analyses to identify epigenetic reprogramming in CRPC. In regions where H3K36me2 was increased, H3K27me3 was decreased, and the compartment was shifted from inactive to active. In these regions, 68 aberrantly activated genes were identified as candidate downstream genes of NSD2 in CRPC. Among these genes, we identified KIF18A as critical for CRPC growth. Under NSD2 upregulation in CRPC, epigenetic alteration with H3K36me2-gain and H3K27me3-loss occurs accompanying with an inactive-to-active compartment shift, suggesting that histone modification and chromatin structure cooperatively change prostate carcinogenesis.


Assuntos
Cromatina , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Receptores Androgênicos/metabolismo , Cinesinas/metabolismo
17.
Ecotoxicol Environ Saf ; 274: 116227, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493703

RESUMO

In current study, Fusarium mycotoxin, beauvericin (BEA), has endocrine disrupting potential through suppressing the exogenous androgen receptor (AR)-mediated transcriptional activation. BEA was classified as an AR antagonist, with IC30 and IC50 values indicating that it suppressed AR dimerization in the cytosol. BEA suppress the translocation of cytosolic activated ARs to the nucleus via exogenous androgens. Furthermore, we investigated the impact of environmental conditions for BEA production on rice cereal using response surface methodology. The environmental factors affecting the production of BEA, namely temperature, initial moisture content, and growth time were optimized at 20.28 °C, 42.79 % (w/w), and 17.31 days, respectively. To the best of our knowledge, this is the first report showing that BEA has endocrine disrupting potential through suppressing translocation of cytosolic ARs to nucleus, and temperature, initial moisture content, and growth time are important influencing environmental factors for its biosynthesis in Fusarium strains on cereal.


Assuntos
Depsipeptídeos , Fusarium , Micotoxinas , Oryza , Receptores Androgênicos , Humanos , Depsipeptídeos/toxicidade , Grão Comestível/química , Fusarium/metabolismo , Micotoxinas/toxicidade , Oryza/química , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Disruptores Endócrinos/química , Disruptores Endócrinos/toxicidade
18.
J Med Chem ; 67(7): 5567-5590, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38512060

RESUMO

Androgen receptor (AR) has been extensively established as a potential therapeutic target for nearly all stages of prostate cancer (PCa). However, acquired resistance to AR-targeted drugs inevitably develops and severely limits their clinical efficacy. Particularly, there currently exists no efficient treatment for patients expressing the constitutively active AR splice variants, such as AR-V7. Herein, we report the structure-activity relationship studies of 55 N-heterocycle-substituted hydantoins, which identified the structural motifs required for AR/AR-V7 degradation. Among them, the most potent compound 27c exhibited selective AR/AR-V7 degradation over other hormone receptors and excellent antiproliferative activities in LNCaP and 22RV1 cells. RNA sequence analysis confirmed that 27c effectively suppressed transcriptional activity of the AR signaling pathway. Importantly, 27c demonstrated potent antitumor efficacy in an enzalutamide-resistant 22RV1 xenograft model. These results highlight the potential of 27c as a promising dual AR/AR-V7 degrader for overcoming drug resistance in advanced PCa expressing AR splice variants.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Linhagem Celular Tumoral , Transdução de Sinais , Relação Estrutura-Atividade , Nitrilas/farmacologia , Resistencia a Medicamentos Antineoplásicos
19.
J Med Chem ; 67(7): 5351-5372, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38530938

RESUMO

CBP/p300 are critical transcriptional coactivators of the androgen receptor (AR) and are promising cancer therapeutic targets. Herein, we report the discovery of highly potent, selective, and orally bioavailable CBP/p300 degraders using the PROTAC technology with CBPD-409 being the most promising compound. CBPD-409 induces robust CBP/p300 degradation with DC50 0.2-0.4 nM and displays strong antiproliferative effects with IC50 1.2-2.0 nM in the VCaP, LNCaP, and 22Rv1 AR+ prostate cancer cell lines. It has a favorable pharmacokinetic profile and achieves 50% of oral bioavailability in mice. A single oral administration of CBPD-409 at 1 mg/kg achieves >95% depletion of CBP/p300 proteins in the VCaP tumor tissue. CBPD-409 exhibits strong tumor growth inhibition and is much more potent and efficacious than two CBP/p300 inhibitors CCS1477 and GNE-049 and the AR antagonist Enzalutamide. CBPD-409 is a promising CBP/p300 degrader for further extensive evaluations for the treatment of advanced prostate cancer and other types of human cancers.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Linhagem Celular Tumoral
20.
Bioorg Chem ; 146: 107309, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537338

RESUMO

Prostate Cancer (PCa) easily progress to metastatic Castration-Resistant Prostate Cancer (mCRPC) that remains a significant cause of cancer-related death. Androgen receptor (AR)-dependent transcription is a major driver of prostate tumor cell proliferation. Proteolysis-targeting chimaera (PROTAC) technology based on Hydrophobic Tagging (HyT) represents an intriguing strategy to regulate the function of therapeutically androgen receptor proteins. In the present study, we have designed, synthesized, and evaluated a series of PROTAC-HyT AR degraders using AR antagonists, RU59063, which were connected with adamantane-based hydrophobic moieties by different alkyl chains. Compound D-4-6 exhibited significant AR protein degradation activity, with a degradation rate of 57 % at 5 µM and nearly 90 % at 20 µM in 24 h, and inhibited the proliferation of LNCaP cells significantly with an IC50 value of 4.77 ± 0.26 µM in a time-concentration-dependent manner. In conclusion, the present study lays the foundation for the development of a completely new class of therapeutic agents for the treatment of mCRPC, and further design and synthesis of AR-targeting degraders are currently in progress for better degradation rate.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/química , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Linhagem Celular Tumoral , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...